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Abstract. Modelling the fact that the three-dimensional structure of most real conjugated
polymers is not crystalline we introduce a random contribution to the perpendicular
interchain hopping of the = electrons. Using a supersymmetric path integral technique
the electronic density of states is calculated. It is found that the dimerization amplitude
is reduced. Various technical complications with the present approach are pointed out.

1. Introduction

Since the pioneering work of Su et al [1] presenting a microscopic model for poly-
acetylene, conjugated polymers have been intensively studied from the point of view
as quasi-onc-dimensional electron-phonon systems. Especially in the continuum ver-
sion [2] of the $sH model, physical properties such as the Peierls transition, structural
effects and the dynamics of non-linear excitations like kinks and polarons have been
explained within the framework of one-dimensional theories. Although it is known
that these models have several shortcomings, €.g. the fact that the neglect of elec-
tronic correlations overestimates the dimerization of the lattice, these independent
electron modeis can also give a qualitative insight, predicting the consequences of
defects and disorder. However one has to keep in mind that the more complicated
three-dimensional structure of real polymers includes interactions between different
polymer chains as well. Recent band structure calculations of crystalline polyacetylene
[3] show that, in this material, adjacent chains are coupled via overlapping hydrogen
orbitals causing a non-zero interchain hopping matrix element. Assuming a perfectly
ordered lattice the main features of the electronic bands can be expiained by an
effective tight binding model with a next nearest interchain hopping. However, in
most materials, this perfect crystalline order is only locally realized. In this paper we
want to study the consequences of small lattice deviations from the perfect crystallinity
which give rise to a random contribution to the otherwise constant interchain hopping
term. The coupling between different chains is assumed to be small compared with
the intrachain next-nearest-neighbour interactions.

We employ the technique of supersymmetric functional integration following
Efetov [4,5). This method can be applied to various problems containing random
potentials, For the case of intrachain disorder this procedure gives the exact answer;
in the appendix we comment on recent results in this area.

Using the continuum version [2, 8] of the $SH model the averaged Green function
G(x —x',E) can be expressed as a functional integral over commuting and anticom-
muting variables. The average over the random contribution can be performed. After
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integrating out the Grassmann variables there remains the eigenvalue problem for a
transfer operator. It is found that no general supersymmetric model can be formu-
lated for mote than one chain. The model Hamiltonian is divided into independent
subspaces of bonding and antibonding states each having own supersymmettic prop-
ertics. We will show that the application and elegance of this method is drastically
restricted. Minimizing the total energy of the system (including electronic and lattice
contributions) we can show that the dimerization amplitude is reduced.

2. Model and effective Hamiltonian

We start with a discrete model describing the two chains by a $sH4 Hamiltonian [1]
and an additional interchain hopping term

H=HSE L HF 4 Hy, , (1)
HSH =3[ (1) = ot 01 — 830 (€] 131650 + HC) + 3K (W) 000 —17,,)7] 2)
HlZ == Z‘n(‘ﬂ ,ncz,n + HC)' (3)

As studied in {8] a constant coupling ¢, = ¢ leads to a splitting of the original
conduction and valence bands to bonding and antibonding states. We assume now
the coupling to be site dependent and the lattice to be perfectly dimerized. In the
continuum version our model then reads

H= fdx &1 (x) h(x) B(x) + ATZL (4)
[ —iosd, +0yA 1(x)
hix) = ( bk t(x) o —ie43, +alA> ()

with four-component spinors $(x) describing left- and right-moving electrons on each
chain, dimerization order parameter A, and A the dimensionless electron-phonon
coupling constant A = K/8a%. The interchain hopping #(x) = ¢ + [{(x) consists of a
constant part ¢ and a random part / with Gaussian white noise characteristics

{ENi=0 ()R =78 ~x). (©)

In the discrete model], + is the variance of the Gaussian random distribution of the
interchain hopping ¢, at the site n.

We use the supersymmetric method following Efetov [4,5] to obtain the averaged
electronic density of states of the system. Introducing four-component commuting
and anticommuting fields s, s* and y, x* the Green function of the system is written
as

G,plx, ' \E) = / Ds' Ds D! Dy x, (¥} x}(x') exp (i / dyL(y)) 7

with the Lagrangian
L=(s"z-hs+x'z-h)x) 8
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z = E +1i0. The average over the Gaussian random contribution 7 defines an effective
Lagrangian £ via

<cxp (i f dx L(x)) >,- = exp ( / dx E(x)) ©)

and is performed using the characteristic function of Gaussian white noise

(o)) =on (3 fore). o

From (5) we have

glx) = (Wi + W], + UIW, 4+ WT,) Y= (2((?)) B

After an additional unitary transformation with U = (=il + o+ 0, + o3) in s and y
the effective Lagrangian is of the form

L=9189,-0l8,9 + 100, - ©18,9; +z(¥ ¥, + ¥lw, + ¥l¥; + ¥lw,)
~A(wly, —we, 4 ule, —wle) (i, + wle, 4 wle, 4 0lw)
= Lig (W] + 0l + e, + ¥iey)” (12)

Following the approach of Fischbeck et af [6,7] for a single chain we define an
effective Hamiltonian H corresponding to this Lagrangian via canonical conjugate
fieids

L=p g +pia! +pay +pldd -H 4 =04 (13)

Corresponding to the four diagonal elements G,,,,, @ = 1,...,4 we have to define p,
and g; in four different ways. For G;; we choose first

- ¥5) g, = %(—'1’1 + U5}

V:— ) {14)
=S p= ()
the other combinations are given by (2} exchanging g, and pI, {3) exchanging g, and

pg and (4) exchanging both g, and pi and ¢, and p;. These different cases lead to
quite similar effective Hamiltonians, which differ just in a sign @, & = +1 in the A
terms

Hay = ~2(¢id: + 4ig: + pipl +popl) + Blagiqy + 6439, — apip] —bpap])

. 2
+ (g} — algz + pup! - popd) - Yivlala, - dla. + pipl - popl)"
(15)
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Following the ideas of Feynman [9] the remaining functional integral in equation
(7) with x playing the role of time can be performed with the help of a transfer
operator technique described in detail in [3,4]. In the following we drop the ab
indices and keep in mind that we have to deal with four distinct Hamiltonjans. The
averaged Green function G(0,E) = (ZLIGM(x,x,E)},, which we need to evaluate
the density of states can be expressed through the eigenstates ¢, of A

HY, = 6, (16)

60,8 =1 Y [aR 14,1 (ix: + o) exp(~L,) an
1. . x *

aR = ;Ed“'l dsy ds; ds; dxy dx; dx; dx, (18

including the correct normalization condition

] dR v, |*= 1. (19)

To calculate the Green function G(0,E) in the limit of an infinite chain length L we
have to solve the problem Hvy = 0 for the lowest eigenvalue g, = 0, which gives the
only contribution in (17). We are looking for a solu:ion ¥p which is supersymmetric
in the same way as H, i.e. it depends only on q g; =s57s; + X7 x;» J = 1,2, the lengths

in the superspaces On account of the pmpertles of rassmann vanables ¥, must be
a polynomial in x7, x; of the form
Yo = Ty(pr, p2) + 9, %001, P2)X1X1 + 0,5 W01, P22 X2

+ 8,,8,,%o(p1, P2)XIX1X2X2 (20
P =515 Py = 85353 21)

Writing (16) in the variables p; and replacing the fields p; by the canonical conjugate
g; using

Go=n+xx PP =00, =00,+0,+0,8, j=12 (22)

we insert equation (13) into (20) and perform the derivations in the fermionic vari-
ables x} and x;. Finally we arrive at the following differential equation determining

¥, as
{p1 [z — )&% — 1) +a A8, + 1) - 3iv (py(82, — 1)* +2(83, — 1)8,)]
+ oy [+ (8%, = 1)+ DA(Z, + 1) — Jiy(pa(8, — 1)
+ 2(3§z - 1)6.0:)] + iy [9192(331 - 1)(3.%2 -1)-8, aﬂz]}
X Wo(p1pp) =0 (23)

which has to be solved in the positive py, p, plane.
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Using the expansion (20) for the lowest transfer function and performing the
integrals over the Grassmann variables the expression for the Green function (17) is
transformed into

fmdﬂldpz(‘pu(api“‘apz)‘l‘o)
fm dpydpy(¥48,,0,, %0 + 8, ¥o0,, )

_nfo dP1|‘I’u(P1’0)|2 fmdpzl‘l’n(o Pz)[
=TR0,0F T [%,0,0F 24)

g(0,E) =

It is a special property of supersymmetry that we have to solve the eigenvalue
problem of the effective Hamiltonian not in the complete {p,, p,} plane but only
at the boundary. The eigenfunction W, is regular, which implies that all partial
derivatives are finite. Therefore the differential equation (23) can be reduced tc the
following coupled equations

{plz = )87, ~ D)+ 8 (8, + 1) - iy (2 (85, — 1) +2(8, ~ 1)8,,)] } ¥o(p1, O

= i76plap2\1'0(p1: Pz) |p1=0 (25)
{pallz+ )82, - 1)+ 0 A%, + 1) - Liy (py(85, - 1" + 280, — 1)8,,)] } (0, p2)
= iTapl 3p2‘1’u(P1,P2) im =0 - (26)

We cannot in general choose a solution ¥y(p;,p;) With a vanishing first derivative
at the boundary of the form 3, ¥,(py,p;)|,,—¢ = 0. This can be seen from the
boundary conditions for the original eigenvalue problem formulated in the variable

(g]g;)"2. Due to the even parity of the effective Hamiltonian the eigenfunctions
for a fixed vajue r, can be written as series

rl’rZ) Z anm(rZ )rl (27)

m=0
with ¥,(0,r,) = 4,4, 8,,%,(p1,P;)|,,=0 = 0. The second derivative is determined

by the condition that ¥ (oo,r,) must be zero. Changing the variables from r; to

p; = r} we obtain 0Z¥, (ry,ry)l, g = 20, ¥, (1, p2)|,,,=p Therefore the two effective
equations are always coupled by a term proportional to the small quantity y. If
Wo(py, p;) can be separated into the product ¢,(p;) - ¢,(p,), then equation (24) can
be written as

_ v Jo dendénle)? Jo~ doalga(py)I?
G0E)= 2, *por 2 P

= Gy(0,E) + G,(0, E) (28)

with ¢; the solutions of the simpler equations

[(E 7 )(p1 8], — 1) + cA(p;8,, + 1) ~ 3 (0(85, — 1)’ +2(8,, — 1)8,)] ;(p) = 0
(29)

with ¢ = g, b. The decoupling approximation is justified as the additional term we
have neglected does not change the asymptotic behaviour of the effective equation.
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Additionally in the limit of ¥ — 0 this solution is exact. In (24) the summation over
the different signs a, b is equivalent to a partial summation of the diagonal elements
G, defined in equation (23c), i.e. G; = G;; + Gs3, Gy = Gpy + G4y A comparison with
[4] shows that the differential equation (25) corresponds to the microscopic model of
a single chain with only one type of on-site impurity potential responsible for forward
scattering. After a Laplace transform of (25) the resulting first order equation can
be solved exactly, but there is no way to perform the inverse transformation and the
solution of ¢,(p) is given only as an mtegral It can be shown [6, 7] that the integrated
partial densities of states N{E) = f dE'n(E') with n;(E) = »~1ImG;(0,E) depend
only on the value ¢,(0) which can be given exactly With the help of thesc results we
can write down the number of states N(£) per unit fength on two chains as

h{zr
N(E) = ZN(E) Z R S;I“ ((6)‘[2) g=22 5=% (30)

zqr(6) being the modified Bessel function of pure imaginary order.

3. Density of states and dimerization amplitude

Within our model we obtain the electronic density of states n(E) for given dimeriza-
tion A and disorder strength y through derivation of (27) with respect to E. From
the number of states N(E) it can be seen that the density of states must be symmetric
to the midgap energy E = 0. Due to the sinh terms in the numerator of N,(E) it
follows that N(+E) = —N(~E) and therefore dN(+E)/dE = dN(~E)/dE. To keep
the total number of states constant a cut-off energy E_ is introduced via the relation

N(E.) = Np. (31)

In the half-filled band case N, the number of states per unit length, is equal to 2.
Expanding (27) around A =0, v = O the cut-off energy reads

AZ AZ,.I,Z
Ec=27l' (1+§?F—5_F+) . (32)

For arbitrary values A, vy the series expansion (33) is not sufficient but E, must
be computed numerically, because the total energy depends sensibly on the cut-off
energy and the energetic diffcrence between the dimerized and the normal state is
very small.

The total energy of the system consists of the electronic part plus the contribution
from the two perfectly dimerized lattices. We have performed numerical calculations
of Eg

EulA1) = 5 4 N(E,) E. - - [“aEn ). (33)

to study the dependence of the Peierls order parameter A on the disorder strength
7. First we evaluated E, from (28) and integrated in a second step (34) numerically.
We used the effective parameters typical of polyacetylene with units of the hopping
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matrix element ¢, along the single chains being A(y = 0) = 0.4, which determines
the dimensionless electron—phonon coupling constant A too. The mean value of the
interchain hopping ¢ is 0.1 according to the result found in {3]. Minimizing the total
energy with respect to A we find the actual dimerization as a function of 4. Upon
increasing v our numerical resuits show a continuous transition from the Peierls state
with a finite dimerization amplitude to an undimerized normal state. We find a critical
value v, = 0.17 at which the dimerization goes to zero. The Peierls order parameter
A is shown in figure 1 as a function of the disorder strength +.

03

L 1 1 1

0.0
0.00 0.05 0.10 A 0.15 0.20

Figure 1. Dimerization order parameter A as function of interchain disorder strength -.

n{E)

1 1

00 0.2 0.4 0.6 038
E

Figure 2. Density of states a(E) for £ > 0 for different values of interchain disorder
strength +v: (@) v = 0.0, (b) v = 0.004, (c) v = 0.016, {(d) » = 0.04

Figure 2 shows the electronic density of states corresponding to the A(y) mini-
mizing the total energy for different values of the disorder strength . Starting with
7 = 0 (the case of a constant interchain hopping, i.e. in a perfectly crystalline material)
the initial singularities at the band edges £ = A £ become more and more smeared
out with increasing + to a double peak structure. For v = 0 there are no states in
the gap |E| < A — ¢ whereas for finite 7 we find a non-zero density of states.
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4. Summary and conclusion

We used a supersymmetric functional integral formalism to solve the problem of two
coupled chaing in the presence of a random interchain hopping in the continuum
description. As a result we see that this model can be mapped in the limit of small
disorder strength v to a model of two independent chains with a special kind of
site disorder. In this case the energy renormalization E — E + ¢ corresponrds to the
formation of bonding and antibonding states. The electronic density of states and
the dependence of the band-order parameter A are calculated with the parameters
of polyacetylene, Within this approximation we find a critical value of v, = 0.17 at
which the perfectly dimerized Peierls ground state breaks down towards a metallic-
like state. We have found that the order parameter A of this phase transition goes
continuously to zero. The random interchain coupling changes the properties of the
gap to a pseudogap with a small but non-zero density of states.

In contrast to the models studied in [4-7] neither the effective Hamiltonian (15)
nor the effective equation (23) are invariant against supersymmetric transformations
in the superspace but are divided into two subspaces of the supervectors g, and g, with
separate symmetries. In these subspaces corresponding to bonding and antibonding
states we can argue as usual that A depends only on the two lengths ¢, and g,, but no
overall supersymmetry in the sense that A would be A(g'q) can be reached. This is
impossible because in equation (15) for the effective Hamiltonian there are terms both
with q19, +¢lq, and glg, —glg,. Even in the limit of two independent chains (¢ — 0,
v — 0) the effective equation separates into these two subspaces. This restricted
symmetry complicates the search for eigenfunctions of the transfer operator because
we have to solve a partial differential equation in two variables instead of an ordinary
differential equation in the case of full supersymmetry. Although the configurational
average can be performed leading to an effective Lagrangian and Hamiltonian the
differential equations connected with the transfer operator technique can be solved
only in the limit of small 4.

The reason for only partial supersymmetzy in the case considered here lies in the
fact that by the coupling of two chajns the one-dimensionality necessary to obtain a
full supersymmetric solution is Jost. Therefore one is left with approximative meth-
ods such as small doping expansions in the effective equations, or other completely
different approaches like the CPA or exact diagonalization of finite systems.

Acknowledgments
This work was supported by Deutsche Forschungsgemeinschaft through SFB 213

(TOPOMAK, Bayreuth). We thank H J Fischbeck, W Apel and A Blumen for
helpful discussions.

Appendix A

In the continuum description of conducting polymers with intrachain disorder the
Hamiltonian reads

A= f dx g (x)(=iogd, + Vy(x) + (A + V3 (x))oy)9(x) + AY/20. (Al
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with random potentials ¥}, and ¥, representing bond and site impurities. In an early
approach [10] to solve this problem using supersymmetric methods a mapping of
equation (Al) onto a system of Schrddinger-type egquations.

(=82 + (A +V(x))? £ AV (x)/dx)f (x) = E¥f, (x) (A2)

with E the eigenvalue of the Dirac equation has been used (for simplicity we restrict
ourselves to the case of bond impurities.) In the corresponding supersymmetric
functional integral this reads for the Lagrangian

L=i®l (e — (=02 4+ 20V + V2 + o /")) O e =E*- A% (A3)
x 3

Now we have the first problem namely to give a meaning to d¥(x)/dx. In general
this is not possible, since e.g. a Gaussian process is not differentiable. However,
mathematically it is clear that + fdrf, (x)V"/(x)fp(x) can be defined via a partial
integration, ie. F [dxV(x) 8,(fy(x) fi(x)). Consequently, the Lagrangian would
have the form

L = i®!(c + 82)® + iV (x}(2A9T® - §,(®1030)) + iV (x) @12,

In [10f this problem is solved by an erroneous proof (V'(x)V'(x")}, = 0, which instead
should give v8,0,8(x —x).

Performing the average over ¥ (x) we then have to calculate (formally} integrals
of the form {(exp([dx {A(x)¥(x) + B(x)V2(x)}}};,. First of all it is clear tha} this
cannot be factorized into

(s (ot

as done in [10), since obviously ¥ (x) and V2(x) are not independent. Second, since
V(x) is Gaussian, ie. {...)y = [DV ...exp(—1/2y [dxV?(x)), one cannot give a
meaning to an expression like {exp( [ dx B(x) V*(x))}; since the presence of terms
quadratic in the exponential alters the normalization necessary t0 obtain convergent
integrals. In summary, the procedure used in [10] in order to calculate an effective
Lagrangian cannot be correci.

The exact solution to this problem has been given by Hayn and Fischbeck [6,7].
If one starts from the Dirac-type equation of motion an effective Lagrangian can be
derived involving only well defined averages of the form

(ep(-i facw ) =emp( [axseae))

with g the characteristic function (here g(y) = —v¥?/2), avoiding the problems dis-
cussed in the previous section. For the coupled chain problem discussed in the main
section we have generalized their method.

So far only 2 Gaussian random field has been considered. If the microscopic
mode] for the impurities is given by random positions x; and equal strengths U, ie.
the impurity potential reads W(x) = U 3, §(x —x;), then this corresponds to a Poisson
random field V(x) with characteristic function g(y) = c{exp(—ily) — 1), ¢ impurity
concentration [11]. (The use of a Gaussian random field corresponds to a quadratic
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Taylor expansion of the Poisson characteristic function) Again employing the correct
supersymmetric technique the final effective equation reads

[EA_ + oA, +ic(]l —exp(—ilA  }]eb,(c) =0 (Ad)
with
Ay =o(1+8%) o=+l (AS)

Note that this equation is quite different than claimed in I (c). Unfortunately, it does
not seem to be solvable due to the presence of derivatives of arbitrary high order.

An approximative solution in CPA to this problem has been given recently [12]
which agrees quite well with numerical simulations [13].
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