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Abstract Modelling Lhe fact that ihe threedimensional StrUcNre of most real conjugated 
polymers is not crystalline we introduce a random contribution to the perpendicular 
inlerchain hopping of the T electrons. Using a supersjmmelric path integral technique 
the electronic density of states is calculaled. It is found [hat the dimerization amplitude 
is reduced. Various technical mmplications with the present approach are pointed out. 

1. Introduction 

Since the pioneering work of Su er a1 [l]  presenting a microscopic model for poly- 
acetylene, conjugated polymers have been intensively studied from the point of view 
as quasi-one-dimensional electron-phonon systems. Especially in the continuum ver- 
sion [Z] of the SSH model, physical properties such as the Peierls transition, Structural 
effects and the dynamics of non-linear excitations like kinks and polarons have been 
explained within the framework of one-dimensional theories. Although it is known 
that these models have several shortcomings, e.g. the fact that the neglect of elec- 
tronic correlations overestimates the dimerization of the lattice, these independent 
electron models can also give a qualitative insight, predicting the consequences of 
defects and disorder. However one has to keep in mind that the more complicated 
threedimensional structure of real polymers includes interactions between different 
polymer chains as well. Recent band structure calculations of crystalline plyacetylene 
[3] show that, in this material, adjacent chains are coupled via overlapping hydrogen 
orbitals causing a non-zero interchain hopping matrix element. Assuming a perfectly 
ordered lattice the main features of the electronic bands can be explained by an 
effective tight binding model with a next nearest interchain hopping. However, in 
most materials, this perfect crystalline order is only locally realized. In this paper we 
want to study the consequences of small lattice deviations from the perfect crystallinity 
which give rise to a random contribution to the otherwise constant interchain hopping 
term. The coupling between different chains is assumed to be small compared with 
the intrachain next-nearest-neighbour interactions. 

We employ the technique of supersymmetric functional integration following 
Efetov [4,5]. This method can be applied to various problems containing random 
potentials. For the case of intrnchain disorder this procedure gives the exact answer; 
in the appendix we comment on recent results in this area. 

Using the continuum version [&SI of the SSH model the averaged Green function 
G(x - x’ ,E)  can be expressed as a functional integral over commuting and anticom- 
muting variables. The average over the random contribution can be performed. After 
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integrating out the Grassmann variables there remains the eigenvalue problem for a 
transfer operator. It is found that no general supersymmetric model can be formu- 
lated For more than one chain. The model Hamiltonian is divided into independcnt 
subspaces of bonding and antibonding states each having own supersymmetric prop- 
erties. We will show that the application and elegance of this method is drastically 
restricted. Minimizing the total energy of the system (including electronic and lattice 
contributions) we can show that the dimerization amplitude is reduced. 

M Wolf and K Fesser 

2. Model and effective Hamiltonian 

We start with a discrete model describing the two chains by a SSH Hamiltonian [l] 
and an additional interchain hopping term 

H = H Y N  + H y H  + H,, 

4, = - CI"(CI,"C2,. + HC). 

(1) 

(2) 

(3) 

3 SSH - - C[-(~B-a(u j ,n+l  - ~ j , n ) ) ( c ~ , n + ~ c j f i  + H C )  + iK (u j ,n+ l  -uj,n)'I 

n 

n 

As studied in [S] a constant coupling I, = t leads to a splitting of the original 
conduction and valence bands to bonding and antibonding states. We assume now 
the coupling to be site dependent and the lattice to be perfectly dimerized. In the 
continuum version our model then reads 

(4) 
A2 H = dr @P'(x)h(x) @ ( x )  + --L I x 

with four-component spinors @ ( x )  describing left- and right-moving electrons on each 
chain, dimerization order parameter A, and the dimensionless electron-phonon 
coupling constant A = K / S a Z .  The interchain hopping r (x)  = t + i ( x )  consists of a 
constant part I and a random part i with Gaussian white noise characteristics 

( i ( x ) ) i  = 0 (i(x)i(x'))i = 7 6 ( x  - x ' ) .  (6) 

In the discrete model, 7 is the variance of the Gaussian random distribution of the 
interchain hopping r, at the site n. 

We use the supersymmetric method following Efetov [4,5] to obtain the averaged 
electronic density of states of the system. Introducing four-component commuting 
and anticommuting fields s, s' and x, x* the Green function of the system is written 
as 

Gea(x,x',E) = DstDsDxt  D,y ,y,(x)x;(x')exp J 
with the Lagrangian 

L = (S'(Z - h)s + x'(2 - h)X)  
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z = E + io. The average over the Gaussian random contribution i defines an effective 
Lagrangian L via 

and is performed using the characteristic function of Gaussian white noise 

From (5) we have 

g(x) = (U;@, + *;U4 + U;*, + @U2) 
Qj = (;t\) . (11) 

After an additional unitary transformation with U = (-il + U,  + u2 + u3) in s and x 
the effective Lagrangian is of the form 

t = uta,@, - u ; ~ ~ u ~  + Q;axq4 - @.:a,@-, + z ( ~ ; ~ l  + $wZ + $q3 + @q4) 

- A(UicJl -U;*’, + QiU3 - *:U4) -r(U!U3 + UiQ4 + U:Fl + lPiTf2) 

- ti-,(@*, + U~U, + + U ~ U  4 2 .  )’ (12) 

Following the approach of Fischbeck er a/ [6,7] for a single chain we define an 
effective Hamiltonian H corresponding to this Lagrangian via canonical conjugate 
fields 

t = p r q ;  +piq:t +pzq;  +p:qit - H q! I = a x q. I ’  (13) 

Corresponding to the four diagonal elements G,,, a = I , .  , , , 4  we have to define pi 
and qi in four different ways. For G,, we choose first 

1 1 
4 - -(-U, - *3)  

P1= -(-Uz - QJ) 

q2 = -(-U1 +U,) 

p z  = -(-U! + U:) 
(14) 

l -  JZ Jz 
1 t  1 

Jz & 

the other combinations are given by (2) exchanging q1 and p! ,  (3) exchanging q2 and 
p i  and (4) exchanging both q1 and p ;  and qz and pf. These different cases lead to 
quite similar effective Hamiltonians, which differ just in a sign a ,  b = f l  in the A 
terms 

H * b = - z ( q I q l + q : q Z + p l p ! + p ~ p l ) + A ( a q ~ q l + b q l q z - a p l p : - b p ~ ‘ l )  

+‘(q!q1 -4k2 +P$! - P d )  - ti7(q!ql - d q z  +P$! - P f l ! ) 2 .  

(15) 
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Following the ideas of Feynman [9] the remaining functional integral in equation 
(7) with x playing the role of time can be performed with the help of a transfer 
operator technique described in detail in [3,4]. In the following we drop the ab 
indices and keep in mind that we have to deal with four distinct Hamiltonians. The 
averaged Green function G(0,E) = (C~=,G, , (X,X,E))~,  which we need to evaluate 
the density of states can be expressed through the eigenstates $m of H 

HG,, = (16) 

including the correct normalization condition 

?b calculate the Green function G(O,E) in the limit of an infinite chain length L we 
have to solve the problem H$" = 0 for the lowest eigenvalue E" = 0, which gives the 
only contribution in (17). We are looking for a solution which is supersymmetric 
in the same way as H, i.e. it depends only on q:qj = s'sj + $ x j ,  j = 1,2, the lengths 
in the superspaces. On account of the properties of drassmann variables must be 
a polynomial in x;, x j  of the form 

Writing (16) in the variables pj and replacing the fields pj  by the canonical conjugate 
qj using 

q,'qj = pi + xj t X ,  j = 1,2 (22) P,P; = ais, = pja:i + a, + a,,a, 
we insert equation (15) into (20) and perform the derivations in the termionic vari- 
ables x,! and x,. Finally we arrive at the following differential equation determining 
Q0 as 
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Using the expansion (20) for the lowest transfer function and performing the 
integrals over the Grassmann variables the expression for the Green function (17) is 
transformed into 

It is a special property of supersymmetry that we have to solve the eigenvalue 
problem of the effective Hamiltonian not in the complete {p, ,  p z }  plane but only 
at the boundary. The eigenfunction a,, is regular, which implies that all partial 
derivatives are finite. Therefore the differential equation (23) can be reduced tc the 
following coupled equations 

We cannot in general choose a solution @'o(p l ,pz )  with a vanishing first derivative 
at the boundary of the form d,,Wu(pt,p,)I,,=u = 0. This can be seen from the 
boundary conditions for the original eigenvalue problem formulated in the variable 
r. = (qtqj)'/'. Due to the even parity of the effective Hamiltonian the eigenfunctions 
{or a kxed value rt can be written as series 

with qn(0 , r z )  = U,,,, ap,9,(pl,pz)Ip,=v = 0. The second derivative is determined 
by the condition that a n ( m , r 2 )  must be zero. Changing the variables from rj to 
p J J  = rz we obtain L5:*n(rl,rz)lq=fi = 2a,,Qn(pl,pt)lp,=,. Therefore the two effective 
equations are always coupled by a term proportional to the small quantity 7. I f  
Wo(p1,pz)  can be separated into the product 41(pl) . +2(p2), then equation (24) can 
be written as 

= Gi(O,E) + Gz(O,E) 

with 4j the solutions of the simpler equations 

with c = a ,  b. The decoupling approximation is justified as the additional term we 
have neglected does not change the asymptotic behaviour of the effective equation. 
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Additionally in the limit of y - 0 this solution is exact. In (24) the summation over 
the different signs a, 6 is equivalent to a partial summation of the diagonal elements 
Goo defined in equation (23c), i.e. GI = G,, +Q,,, G2 = En+&. A comparison with 
141 shows that the differential equation (25) corresponds to the microscopic model of 
a single chain with only one type of on-site impurity potential responsible for forward 
scattering. After a Laplace transform of (U) the resulting first order equation can 
be solved exactly, but there is no way to perform the inverse transformation and the 
solution of $,(p) is given only as an integral. It can be shown [6,7] that the integrated 
partial densities of states ?(E)  = J:dE'n,(E') with nl(E) = ?r-'ImQl(O,E) depend 
only on the value $1(0) which can be given exactly. With the help of these results we 
can write down the number of states N ( E )  per unit length on two chains as 

M Wor ond K Fesser 

Ii6,(6) being the modified Bessel function of pure imaginary order. 

3. Density of states and dimerization amplitude 

Within our model we obtain the electronic density of states n(E)  for given dimeriza- 
tion A and disorder strength y through derivation of (27) with respect to E. From 
the number of states N ( E )  it can be seen that the density of states must be symmetric 
to the midgap energy E = 0. Due to the sinh terms in the numerator of N . ( E )  it 
follows that N(+E)  = -N(-E)  and therefore (W(+E)/dE = U(-E)/dE.  d keep 
the total number of states constant a cut-off energy E, is introduced via the relation 

N ( E , )  = Nu. (31) 

In the half-filled band case Nu, the number of states per unit length, is equal to 2. 
Expanding (27) around A = 0, -, = 0 the cut-off energy reads 

+ ...) A2 A2yz 

For arbitrary values A, y the series expansion (33) is not Sufficient but E, must 
be computed numerically, because the total energy depends sensibly on the cut-Off 
energy and the energetic difference between the dimerized and the normal state is 
very small. 

The total energy of the system consists of the electronic part plus the contribution 
from the two perfectly dimerized lattices. We have performed numerical calculations 
of E,, 

LE* (33) 
A2 

Et.,t(A,~) = x +N(E,) .E ,  - dEN(E).  

to study the dependence of the Peierls order parameter A on the disorder strength 
y. First we evaluated E, from (28) and integrated in a second step (34) numerically. 
We used the effective parameters typical of polyacetylene with units of the hopping 
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matrix element tu along the single chains being A(y = 0) = 0.4, which determines 
the dimensionless electron-phonon coupling constant X too. The mean value of the 
interchain hopping f is 0.1 according to the result found in [3]. Minimizing the total 
energy with respect to A we find the actual dimerization as a function of y. Upon 
increasing y our numerical results show a continuous transition from the Peierls state 
with a finite dimerization amplitude to an undimerized normal state. We find a critical 
value yc = 0.17 at which the dimerization goes to zero. The Peierls order parameter 
A is shown in figure 1 as a function of the disorder strength y. 

0.0 , 
0.03 0.05 0.10 0.15 0.20 

A 

Figure 1. Dimerization order parameter A as function of interchain disorder strenglh y. 

E 
Figure 2. Density of slates n ( E )  for E > 0 for different values of interchain disorder 
strength y: (a) y = 0.0, (b) y = 0.004. (c)  y = 0.016, (d) 7 = 0.04 

Figure 2 shows the electronic density of states corresponding to the A(y) mini- 
mizing the total energy for different values of the disorder strength y. Starting with 
y = 0 (the case of a constant interchain hopping, i.e. in a perfectly crystalline material) 
the initial singularities at the band edges E = A *I become more and more smeared 
out with increasing y to a double peak structure. For y = 0 there are no states in 
the gap [El < A - f whereas for finite y we find a non-zero density of states. 
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4. Summary and conclusion 

We used a supersymmetric functional integral formalism to solve the problem of two 
coupled chains in the presence of a random interchain hopping in the continuum 
description. As a result we see that this model can be mapped in the limit of small 
disorder strength y to a model of two independent chains with a special kind of 
site disorder. In this case the energy renormalization E 3 Eft corresponds to the 
formation of bonding and antibonding states. The electronic density of states and 
the dependence of the band-order parameter A are calculated with the parameters 
of polyacetylene. Within this approximation we find a critical value of yc = 0.17 at 
which the perfectly dimerized Peierls ground state breaks down towards a metallic- 
like state. We have found that the order parameter A of this phase transition goes 
continuously to zero. The random interchain coupling changes the properties of the 
gap to a pseudogap with a small but non-zero density of states. 

In contrast to the models studied in [4-7J neither the effective Hamiltonian (15) 
nor the effective equation (23) are invariant against supersymmetric transformations 
in the superspace but are divided into [WO subspaces of the supelvectors q1 and q2 with 
separate symmetries. In these subspaces corresponding to bonding and antibonding 
states we can argue as usual that H depends only on the two lengths q1 and q2. but no 
overall supersymmetry in the sense that H would be H(q'q) can be reached. This is 
impossible because in equation (15) for the effective Hamiltonian there are terms both 
with 4;q1 +q$q2 and qiql -qlq2. Even in the limit of two independent chains (I - 0, 
y 3 0) the effective equation separates into these two subspaces. This restricted 
symmetry complicates the search for eigenfunctions of the transfer operator because 
we have to solve a partial differential equation in two variables instead of an ordinary 
differential equation in the case of full supersymmetry. Although the configurational 
average can be performed leading to an effective Lagrangian and Hamiltonian the 
differential equations connected with the transfer operator technique can be solved 
only in the limit of small y. 

The reason for only partial supersymmetry in the case considered here lies in the 
fact that by the coupling of two chains the onedimensionality necessary to obtain a 
full supersymmetric solution is lost. Therefore one is left with approximative meth- 
ods such as small doping expansions in the effective equations, or other completely 
different approaches like the CPA or exact diagonalization of finite systems. 

M Wolf and K Fesser 

Acknowledgments 

This work was supported by Deutsche Forschungsgemeinschaft through SFB 213 
(TOPOMAK, Bayreuth). We thank H J Fischbeck, W Ape1 and A Blumen for 
helpful discussions. 

Appendix A 

In the continuum description of conducting polymers with intrachain disorder the 
Hamiltonian reads 

H = dx $+(x)(-iu& + Vu@) + (A + Vl(x))ul)$(w) + A2/2X. (Al) J 
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with random potentials Vu and V, representing bond and site impurities. In an early 
approach [lo] to solve this problem using supersymmetric methods a mapping of 
equation (AI) onto a system of Schrbdinger-type equations. 

(-8: + (A + V(x))’ * dV(x)/drf*(x) = E2f*(x) 

with E the eigenvalue of the Dirac equation has been used (for simplicity we restrict 
ourselves to the case of bond impurities.) in the corresponding supersymmetric 
functional integral this reads for the Lagrangian 

L = i@t(c - (-8,’ + 2AV + V z  + 03V’))@ 6 = E 2  - A’. (4 
Now we have the first problem namely to give a meaning to dV(x)/dr. in general 
this is not possible, since e.g. a Gaussian process is not differentiable. However, 
mathematically it is clear that -+sdxf+(x)V’(x) f*(x)  can be defined via a partial 
integration, i.e. J”& V ( x )  8,V’(x) f*(x)). Consequently, the Lagrangian would 
have the form 

L = i@t(c + a:)@ + ~ V ( X ) ( ~ A @ ~ @  - 8=(@’n3@)) + iV2(x)Qt@. 

In [lo] this problem is solved by an erroneous proof ( V ‘ ( X ) V ’ ( X ’ ) ) ~  = 0, which instead 
should give y8,diS(x -1‘). 

Performing the average over V(x) we then have to calculate (formally) integrals 
of the form (exp(J’dx {A(x)V(x) + B ( X ) V ~ ( X ) ) ) ) ~ .  First of all it is clear thq  this 
cannot be factorized into 

as done in [lo], since obviously V(x)  and V2(x)  are not independent. Second, since 
V ( x )  is Gaussian, i.e. (. . .),, = J ” D V , .  .exp(-1/2y~dr V 2 ( x ) ) ,  one cannot give a 
meaning to an expression like (exp(ldrB(x) V2(x) ) ) ,  since the presence of terms 
quadratic in the exponential alters the normalization necessary to obtain convergent 
integrals. In summary, the procedure used in [lo] in order to calculate an effective 
Lagrangian cannot be correct. 

The exact solution to this problem has been given by Hayn and Fischbeck [6,7]. 
If one starts from the Dirac-type equation of motion an effective Lagrangian can be 
derived involving only well defined averages of the form 

with g the characteristic function (here gb) = --#/2), avoiding the problems dis- 
cussed in the previous section. For the coupled chain problem discussed in the main 
section we have generalized their method. 

So far only a Gaussian random field has been considered. If the microscopic 
model for the impurities is given by random positions xi and equal strengths U, Le. 
the impurity potential reads W ( x )  = U xi 6(x-xi) ,  then this corresponds to a Poisson 
random field V(x) with characteristic function go) = c(exp(4Uy) - l), c impurity 
concentration 1111. (The use of a Gaussian random field corresponds to a quadratic 
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Bylor expansion of the Poisson characteristic function.) Again employing the correct 
supersymmetric technique the final effective equation reads 

[-U- + a u t  + ic(1- e~p(-iV,4,.)]l/)~(o) = 0 (*4) 

with 

A ,  = u(1 f 8:) a,= fl. 

Note that this equation is quite different than claimed in I (c). Unfortunately, it does 
not seem to be solvable due to the presence of derivatives of arbitrary high order. 

An approximative solution in CPA to this problem has been given recently [12] 
which agrees quite well with numerical simulations [13]. 
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